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SUMMARY 

A finite difference technique has been developed to study the Newtonian jet swell problem. The streamfunc- 
tion and vorticity were used as dependent variables to describe the jet flow. The boundary-fitted co-ordinate 
transformation method was adopted to map the flow geometry into a rectangular domain. The standard 
finite difference method was then applied for solving the flow equations. The location of the jet free surface 
was updated by the kinematic boundary condition, and an adjustable parameter was included in the free- 
surface iteration. We could obtain numerical solutions for the Reynolds number as high as 100, and the 
differences between the present study and previous finite element simulations on the jet swell ratio are less 
than 5%. 

KEY WORDS Jet swell Finite difference method 

INTRODUCTION 

The phenomenon of jet swell appears in many industrial applications, and an accurate theoretical 
description of the fluid-swelling behaviour will be helpful for these operations.' Numerical 
solution of the jet swell problem is difficult because it is necessary to locate the free surface of the 
jet as part of the solution. The jet swell problem has become a popular test case for free-surface 
flow simulations. Several numerical techniques for solving the jet swell problem were recently 
reviewed by Tanner,' and the strategy for locating the free surface was discussed in detail by 
Ki~ t l e r .~  The finite element method has been well developed for simulating the jet flow accurately, 
and the range of applicability has been extended to the cases of high Reynolds number and high 
surface t e n ~ i o n ; ~  whereas for the finite difference method the development has been slow and rare. 
Early works using the finite difference method led to erroneous  result^;^ only recently did Dutta 
and Ryan' overcome the difficulty of locating the free surface of the jet by using an orthogonal 
mapping technique to transform the flow geometry into a rectangular domain, and they solved 
the flow problem of a creeping Newtonian jet successfully. 

Since the finite difference method has its merits-such as the formulation and mesh refinement 
are easy,' time discretization for both the finite difference and finite element methods is usually 
based on the finite difference m e t h ~ d , ~  and extension of finite difference simulation for steady flow 
problems to time-dependent problems can be carried out in a straightforward manner-it is 
useful to develop an efficient numerical scheme for treating free-surface flow problems. This is our 
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motivation and we have developed a finite difference scheme for solving the planar Newtonian jet 
swell problem. 

We take a similar approach to that of Dutta and Ryan, i.e. the mathematical problem is 
formulated with streamfunction and vorticity as dependent variables and a mapping technique is 
applied so that the flow problem is solved in a transformed plane. However, we have adopted a 
more flexible mapping technique, the boundary-fitted co-ordinate transformation method 
(BFCTM) developed by Thompson et a1.,6,' and we have found that it is necessary to have an 
adjustable parameter in the free-surface iteration for the cases of non-zero Reynolds numbers. We 
are capable of obtaining convergent solutions for the Reynolds number as high as 100 and the 
capillary number as low as 0.1. 

We shall compare our numerical results with the analytical solution of Richardson: the 
predictions of Dutta and Ryan' and some finite element solutions, namely the works of Omodei: 
Ruschak" and Georgiou et aL4 

MATHEMATICAL FORMULATION 

The steady incompressible flow of a planar Newtonian jet emanating from a slot as shown in 
Figure l(a) is considered. The gravitational effects are neglected in the present analysis. The 
equation that expresses the conservation of mass is 

aii a6 
-+:=O, ax ay 

and the Navier-Stokes equations in the X- and j-directions are 

Owing to symmetry, we only consider the upper half of the flow regime. We assume that AS is 
long enough and the flow has the fully developed rectilinear velocity profile far upstream at AC, 
and the jet becomes unidirectional far downstream at BE. The corresponding boundary condi- 
tions are as follows. 

(Al) Along AS, 

ii = 6= 0 (no-slip). (44 

(Bl) At AC, 

(Cl) At BE, 

where pa is the surrounding pressure. 

(Dl) Along CDE (line of symmetry), 

aiilaj = 0, O=O. (4) 
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Figure 1. Flow geometry (a) in the physical plane and (b) in the transformed plane 

(El) On the free surface SB, or j=h(x), the following three conditions must be satisfied: 

(i) the kinematic condition 

dh/dZ = i@, (54 

(ii) the tangential stress balance 

(iii) the normal stress balance 

where 0 is the surface tension coefficient and l? is the curvature of the jet surface, 

- d2h/dZ2 R E  
[l +(dh/dx)z]3/2 ‘ 

The streamfunction @ and vorticity 6 are used as the dependent variables. They are defined as 
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The following c:imensionless variables are defined: 

x = X la, 
u = U/( u), 

P = PAP (u> /ah 
where ( u )  is defined as the average 

y = j l a ,  H = h/a, 

v = l7/(u), 

cP=cpl(u)a, o = G a / ( u > ,  

velocity at AC, i.e. 

1 a p  
3P ax (u)- --- a’. 

Equation (1) is automatically satisfied with the definition of cp, and from (7) and (8) we have 

a2p 
ax’ ay2 
-+-= -0. 

Substituting the dimensionless variables into (2) and (3), we obtain 

Re ( u  + v $ )  = -: + (G a Z u  +v), azu 

where the Reynolds number Re is defined as R e = p ( u ) a / p .  

the following vorticity transport equation: 
The pressure terms in (1 1) and (12) are eliminated through cross-differentiation and we obtain 

Equations (10) and (13) are the governing equations for the jet swell problem. Without loss of 
generality, we assign the line of symmetry CDE as cp=O and the line ASB will be cp= 1. The 
corresponding boundary conditions for (10) and (1 3)  are as follows. 

(A2) Along AS, 
a0 au 

cp= 1, a x  a y ’  

cp=$(3y-y3) ,  w = 3 y .  

WE--- 

(B2) At AC, 

(C2) At BE, 

w=O, p = O ,  Y cp=- 
C,’ 

where the jet swell ratio C, - 6/a and we take pa = 0 as the reference pressure. 

(D2) Along CDE, 
cp =o, 0=0. 

(E2) On the free surface SB, or y = H ( x ) ,  

av aU 
ax ay w=----, cp= 1, 
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and the following three conditions have to be satisfied: 

(i) the kinematic condition 

dH/dx = v / u ,  

(ii) the tangential stress balance 

(iii) the normal stress balance 

where R is the dimensionless curvature and the capillary number Ca is defined as 
Ca-p<u) fa. 

It should be noted that the boundary condition for o along ASB is expressed in terms of u and v 
here; this is necessary for our numerical integration and will be explained later. 

CO-ORDINATE TRANSFORMATION 

Since the free surface of the jet may have different shapes, it is awkward to solve the jet swell 
problem with conventional finite difference methods. Dutta and Ryan’ selected an orthogonal 
transformation method to map the flow region into a rectangular domain to avoid a direct fitting 
of the jet surface with the grid points. We adopted a more flexible technique, the boundary-fitted 
co-ordinate transformation method developed by Thompson et al., ‘*’ for our numerical map- 
ping. The upper half of the flow regime in Figure l(a) will be transformed into a rectangular 
domain with (5,  v ] )  as independent variables. The correspondence between the (x, y )  and the (5,  q )  
plane is shown in Figure l(b). To apply the method of Thompson et at., we need to solve the 
following mapping equations: 

where 

.=( t)’ + ( $)z, 

?=( $)z + ( $)z, 

A is the Jacobian of the transformation and M(5,  v ] )  and N ( 5 ,  v ] )  are forcing functions that are used 
to regulate mesh intervals. 

To solve (16), Dirichlet boundary conditions are imposed on the boundary of the rectangular 
domain in Figure l(b). Since each grid point on the boundary of the rectangle should be assigned 
to a boundary point in the physical domain in Figure l(a), the co-ordinates (x,  y) of the boundary 
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point become the required boundary values of this grid point. A detailed description of this 
procedure is explained in the next section. 

Equations (10) and (13) should be transformed to the (5, q )  plane accordingly, and we have 

a2v a Z c p  a Z c p  

at2 ataq 3'12 
a--2/3-+yY=--1 

To simplify our numerical procedure, the forcing functions M and N are taken to be zero in our 
work this corresponds to the harmonic mapping discussed by Thompson et al.' u, o and w can be 
expressed as follows: 

To determine the pressure, we first transform (11) and (12) to the (t, q )  plane: 

=-  (apay _ _ _ _ _  spay) + (awax ___- -  awax 
atatt aqa t  at  all alt a t  

(apax apax)  ( away away 
at all attat at atl all at 

= +  _ _ _ _ _  + _ _ _ _ _  

note here that w is introduced into the right-hand side of the equations to replace u and u. 
The term aplaq can be eliminated in these two equations; we obtain 

(22) 

Equation (22) is used to approximate the pressure distribution in our computation. 
The corresponding boundary conditions in the transformed plane are as follows. 

(A3) Along A'S, 

c p =  1, (23) 

(B3) At A'C', 

cp = t ( 3 Y  - Y3), 

cp = YICO, 0=0, p=o. 

0 = 3y. 

(C3) At B'F', 
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(D3) Along C’E’, 

(E3) On the free surface S’B’, 

cp = 1, 

and the following three conditions have to be satisfied: 

(i) the kinematic condition 
dH u ay/a< 
dx u axlay’ 
-=-=- 

(ii) the tangential stress balance 

(iii) the normal stress balance 

NUMERICAL PROCEDURE 

The mapping equations (16) and equations (17)-(30) that describe the fluid motion in the 
transformed plane will be solved numerically by the finite difference method. We use second- 
order formulae to discretize these equations. The rectangular domain in Figure l(b) is divided 
into I + 1 segments in the t-direction and J + 1 segments in the ?-direction. Hence i = O ,  I + 1 
correspond to the boundary lines in the <-direction, andj  = 0, J + 1 correspond to the boundary 
lines in the ?-direction. 

For a functionf(<, q), its first and second derivatives can be approximated as’’ 

(&q)i,j = (1/4~s)(A+1,j+1-A+1,j-1 -A-l,j+l + A - I , ~ - I ) ~  
where subscripts denote partial differentiation, r = At,  s = A?, ti = ir, q j  = js and A, stands for 

Derivatives on the boundary can be approximated using one-sided formulae: l 2  
f (ti, Vj). 

The numerical procedure for solving the jet flow problem consists of three steps, as follows. 
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( I )  Numerical mapping 

The upstream length CD and 
downstream length DE are selected on the basis of Tanner's criterion' so that the appropriate 
boundary conditions can be applied at AC and BE. The position of the free surface SB should be 
guessed and the initial flow regime for the numerical integration is completely determined. After 
non-dimensionalization, the boundary of the flow regime is discretized and the corresponding 
mesh points on the boundary of the rectangle in Figure l(a) should be assigned first; the guessed 
values of the interior mesh points (x, y) in the (r,  q) plane should be given. The coefficients a, B, y 
and Iz  in (16c) are estimated with guessed values of x and y using (31). After discretizing (16a) and 
(16b) with (31), the resulting linear systems of equations are solved by the successive line 
overrelaxation method. The newly generated values of (x, y) are compared with the guessed 
values as a convergence test. The iterative process will continue until convergence is achieved. 
Values of a, p, y and 1 will be used later in the flow equations. 

The mapping procedure follows the work of Thompson et 

(ZZ) Solution of theyow equations 

The procedure for solving the flow equations is given as follows. 

1. Guess cp and w, say cpo and wo, on all interior grid points in the (l, q) plane. C ,  in (25) should 
also be guessed. 

2. Using (19a) and (19b), uo and uo on A'S'B' can be estimated with guessed values of cpo on 
A'S'B' and on two grid lines below; then wo on A'S'B' can be computed using (19c). This 
will determine the boundary condition for w on A'S'B'. 

3. Equations (17) and (18) are solved by the successive line underrelaxation method to generate 
new values of cp and w, say cp' and wl, for all interior grid points. Note that the terms on the 
right-hand side of (17) and (18) are approximated with values of cpo and wo during the 
iteration. 

4. Values of w, say w',  on the wall A'S' are updated with the same method as step 2, i.e. u1 and 
u1 are first determined and then w' is determined with (19). 

5.  The pressure p at B'E' is assumed to be zero and the value of p at each grid point to the left of 
B'E' can be computed using (22). However, during the iteration process, only values of p on 
the free surface S'B' are needed. 

6. Equation (29) is used to update u on the free surface S'B'. All the terms on the right-hand 
side of the equation are approximated using u' and u' obtained in step 4. The term au/aq is 
discretized with (32) to update u on S'B'. A new value of u, say u(' + 'Iz), is generated at each 
grid point on S'B'. Similarly, (30) is used to update u on S'B' and we can obtain Y( '+  'Iz). The 
pressure on the free surface in step 5 is needed in (30). 

7. w on the free surface S'B' is updated using (19c) with u ( ' + ' / ~ )  and o ( ~ + ' / ~ ) ,  and we will 
have 0'. 

8. Check convergence. cp' and w' will be compared with cpo and wo for all interior points and 
w1 will be compared with wo on A'S'B'. 

If the maximum difference between guessed values and newly generated values is smaller than a 
preset tolerance, we can update u, u and p ,  then go to (111), otherwise we will replace 'po by 'p' and 
wo by w1 and return to step 3. 

(111) Updating the free surface 

With the convergent solution of u and u on the free surface available, we can use (28) to generate 
a new position of the free surface. Equation (28) can be integrated numerically starting from the 
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separation point as follows: 

H ( x )  = 1; f dx. 
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(33) 

We use the trapezoidal rule to obtain H ( x )  on the first grid point downstream, then the 
remaining points are computed using Simpson's rule. Once a new position of the free surface is 
generated, we continue the convergence check by comparing it with the current position of the 
free surface on each grid point in the physical plane. If convergence is achieved, i.e. the maximum 
difference of the two free surface positions is smaller than a preset value, our computation is 
complete; otherwise the current free-surface position is updated and the iteration is repeated 
starting from (I). We have found that if we replace the current free-surface position by the new 
free-surface position determined by (33), we cannot obtain convergent solutions for the case of 
high Re. Therefore it is necessary to update the free-surface position as follows: 

H ( x ) " ~ ~  = (1 - k ) H ( x ) '  + kH(x)"ld,  (34) 
where H ( X ) " ~ ~  is the new free-surface position for the next iteration, H(x)' is determined by (33), 
H(x)"ld is the current free-surface position and k is an adjustable parameter, which varies between 
0 and 0.98 in our computation. As Re increases, it is necessary to increase k to obtain convergent 
solutions. The jet swell ratio C, is the dimensionless jet thickness far downstream, i.e. C, is equal 
to H ( x )  at B'E'. 

RESULTS AND DISCUSSION 

All of our computations were performed on a CDC Cyber 180/840 machine. The tolerance of 
convergence was fixed to be 1.0 x 

The swelling of a creeping Newtonian jet with Ca = lo00 was first selected as a test case. We 
took A x  = A y  for convenience in our computation and the step size was systematically reduced 
from 0.5 to 0.05. It was found that the difference in the swell ratio for the cases A x  = 0.1 and 
A x  = 0.05 was less than 0.1%. We also tested the case with Re = 100 and Ca = lo00 and found 
that the numerical results for A x  = 0.1 and A x  = 0.05 were almost identical. Therefore 
A x  = A y  = 0.1 was fixed for all the following runs. 

We also used the problem of the creeping Newtonian jet to experimentally determine the 
optimal relaxation factor. The optimal relaxation factor for mapping was tested between 0.3 and 
1.7; it was found that the value 1.5 would need the least computing time, and 1-5 was therefore 
chosen as the optimal overrelaxation factor. Similarly, the underrelaxation factor for solving the 
flow equations was tested between 0.2 and 0.9, and 0.9 appeared to be the optimal under- 
relaxation factor. These two factors were also fixed for the following runs. 

To illustrate the CPU time required, a standard mesh with Ax = A y  = 0.1 was set up for the 
creeping Newtonian jet problem. The upstream length was selected to. be 2 and downstream 
length was 13. There were a total of 151 x 1 1  mesh points. The initial profile for the free surface 
was selected as 

for all tests. 

- 

y =  6, +(1  -6,)e-A", (35) 
where 6, = 0.95 and A = 6.5. It took 113.2 CPU seconds to generate the convergent solution, and 
the location of the free surface, which can be computed by (111) in the previous section, was 
updated 24 times. A portion of the numerically simulatedjet near the separation point is shown in 
Figure 2; note that only grid lines with A x  = A y  = 0.2 are given in the figure. 
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- 2  0 2 -  

Figure 2. The shape and mesh of a creeping Newtonian jet with Ca = lo00 

Table I. Values of k with Cu = lo00 

Re k 

0 
10 
20 
40 
60 
80 

100 

~ 

0.00 
0.10 
0.70 
0.80 
0.90 
093 
098 

72 

The convergent solution for the creeping Newtonian jet was used as the initial guess to produce 
numerical solutions for high Re. Usually, Re was incremented by 10 and a series of solutions 
could be generated. The numerical scheme was not sensitive to the variation of Ca. Initially, k was 
selected to be zero; if the iteration failed to converge after the free surface was updated a certain 
number of times, k would be reduced. We found that the iteration would either diverge or 
converge before the free surface was updated 20 times. Suitable values of k that lead to fast 
convergence for different Reynolds numbers are given in Table I. With this approach we could 
obtain convergent solutions for Re as high as 100 and Ca as low as 0.1. 

The adjustable parameter k we used in the free-surface iteration is similar to the 'damping 
factor' introduced by Omodei.' We found that k depends strongly on the Reynolds number 
whereas the damping factor of Omodei depends only on the capillary number. Actually, the 
capillary number did not appear in Omodei's formulation explicitly; a surface tension parameter 
$was defined such that Ca = Re/$, $ and Re were varied separately to test convergence. In our 
computation, only Re appears in the iteration process (step 3 in (11)), whereas Ca is needed in 
updating u on the free surface (step 6 in (11)); therefore Re was found to be the only critical 
parameter for convergence. 

We also tested the effects of upstream and downstream length on the numerical solution. It 
should be noted that Omodei' and Georgiou et aL4 used the primitive variables u, u and p as 
dependent variables in their finite element simulation, and the downstream length has to be 
longer than 75 to generate accurate numerical solutions for the case of high Re. Our finite 
difference simulation is based on the streamfunction-vorticity formulation; we tested the up- 
stream length from x = - 2 to - 4 and found that x = - 3 was satisfactory for the range of Re we 
studied. The downstream length was checked from x = 12 to 20 and it was found that the 
numerical results were almost identical for x = 13 and 20 with Re = 100. 

We first compared our numerical results with Richardson's exact solution* in terms of pressure 
variation. The pressure along the centreline of the flow system is shown in Figure 3. Inside the slot 
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Figure 3. Comparison of pressure distribution along the centreline of the flow system with Richardson’s solution9 

1.200 

1.110 

1.020 

co 

0.93C 

0.84C 

0.75C 

..... OMODEI 
- PRESENT 
--- GEORGIOU ET A L  
0 RUSCHAK 
A DUTTA 8 RYAN 

0.00 15.00 30.00 45.00 60.00 75.00 
R t  

Figure 4. Comparison of the jet swell ratio with previous works 

the agreement is excellent; the pressure we computed in the jet is slightly lower than Richardson’s 
prediction. 

A comparison of the jet swell ratio with previous  work^',^,^^^^ is given in Figure 4. Values of 
the jet swell ratio Co computed by the BFCTM are close to those of finite element simulations if 
the Reynolds number is low. However, as Re increases, Co predicted by the BFCTM is about 5% 
lower than previous works that were based on the finite element method. 

The shapes of the creeping Newtonian jet determined by different numerical approaches are 
given in Figure 5. All the authors found that the jet will reach its final thickness at a downstream 
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Figure 5. Comparison of the surface shapes for a creeping Newtonian jet with Ca = 1ooO: (1) Ruschak;" (2) Orn~dei ;~  
(3) Dutta and Ryan;' (4) present 

Y 

0.8 0,9' 1.0 2.0 3.0 4.0 

X 

Figure 6. Effect of Ca on the jet free surface with Re = 1 :  (1) Ca = 1OOO; (2) Ca = 2.0; (3) Ca = 0.5 
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Figure 7. Effects of Ca and Re on the jet free surface: (1) Re = 100, Ca = 1OOO; (2)  Re = 10, Ca = 1OOO; ( 3 )  Re = 10, 
Ca = 0.5 
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length x = 2, but the shapes for x < 2  are slightly different. The jet swell ratio predicted by the 
finite difference method is lower than that by the finite element method. 

The effect of surface tension on the jet free surface for Re = 1 is shown in Figure 6; since C ,  > 1, 
the jet swells after emanating from the slot. As the surface tension increases, Ca will decrease and 
the jet will have less swelling, even though the effect is not significant. Similar results for moderate 
Re are given in Figure 7. Comparing with the jet shapes in Figure 6, the jet contracts now instead 
of swelling and the fluid surface tension tends to reduce the contraction. The jet will contract as 
the fluid inertia or the Reynolds number increases. The effect of the surface tension on the jet 
shape appears to be less important as Re increases. With Re = 100 the effect of Ca on the jet 
surface is not detectable; the curve of Ca = 0 5  coincides with curve (1) and is not shown in 
Figure 7. More detailed results regarding the effect of surface tension can be found in Omodei' 
and Georgiou et al." 

We also computed the errors in the mass conservation equation (1) and the tangential and 
normal stress balance equations ( 1  5b) and (1 5c) on the jet free surface. If these three equations are 
exactly satisfied, the right-hand sides of these equations should be zero. Once the flow field is 
determined, the left-hand sides of these equations can be approximated and 0, Ts and Tn denote 
the residuals of these three equations respectively. Table I1 presents a comparison of these errors 
with the works of Omodei' and Dutta and Ryan.' Omodei did not provide data on mass 
conservation errors, therefore only Ts and Tn from his work are listed here. It is noted that Ts and 
Tn are small for the three approaches. Comparing with the work of Dutta and Ryan, the errors of 
mass conservation for the present study are smaller but the values of Ts on the first few grid points 
are slightly higher. Values of Tn, Ts and D all decrease as x increases and become negligible 
if x > 2. 

The effects of Re on these errors are given in Table 111. When Re is small, the errors are only 
significant for several downstream mesh points close to the separation point and are negligible for 
downstream points far from the separation point; but the errors will not decrease on the free 
surface when Re is large. Reducing Ca, as indicated by the results in Table IV, seems to have little 
effect on these errors. 

CONCLUSIONS 

We have developed a finite difference technique to study the Newtonian jet swell problem. The 
mathematical problem of the jet swelling is formulated with the streamfunction and vorticity as 
dependent variables. The boundary-fitted co-ordinate transformation method developed by 
Thompson et al.6*7 was adopted to map the flow geometry into a rectangle, and the flow 
equations are solved in the transformed plane. The iteration of the free surface is similar to the 
approach of Dutta and Ryan,' but we have used an adjustable parameter for free-surface 
iterations. With this modificaton we could obtain convergent solutions for the Reynolds number 
as high as 100. Comparing with the existing results based on finite element simulations, the jet 
swell ratio we computed is slightly lower, but the differences are within 5%. 

We also computed the errors on mass conservation and tangential and normal stress balances 
on the jet free surface. When Re is small, the errors are only significant on the first few points near 
the separation point. However, when Re is large, the errors will remain on the jet surface from the 
separation point to a distance far downstream. 

At the present time, even though the finite element method can simulate the jet flow problem 
over wider ranges of Reynolds numbers and capillary numbers than can the finite difference 
method, the application of numerical mapping is capable of locating the jet free surface 
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successfully, and it deserves further investigation so that the range of convergence may be 
extended. For example, the standard central difference scheme may be replaced by other finite 
difference schemes to discretize the inertial terms in the flow equations; a study on this subject is 
under way. 
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APPENDIX: NOTATION 

a constant, equation (35) 
one-half of the slot gap 
capillary number, p ( u ) / o  
jet swell ratio, 6 / a  
error of mass conservation 
a function in the transformed plane 
location of the free surface, dimensional and dimensionless 
numbers of grid points in the transformed plane 
adjustable parameter, equation (34) 
forcing functions for mapping, equation (16) 
fluid pressure, dimensional and dimensionless 
surrounding pressure 
curvature of the jet surface, dimensional and dimensionless 
Reynolds number, p(u)a /p  
mesh intervals in the transformed plane 
a surface tension parameter, s- Ca/Re 
error of normal stress balance 
error of tangential stress balance 
velocity component in the x-direction, dimensional and dimensionless 
uniform downstream jet velocity 
average fluid speed upstream in the slot 
velocity component in the y-direction, dimensional and dimensionless 
Cartesian co-ordinates. dimensional and dimensionless 

coefficients of mapping equations, equation (16c) 
one-half of the final jet thickness 
a parameter, equation (35) 
Jacobian of mapping equation, equation (16c) 
fluid viscosity 
co-ordinates in the transformed plane 
fluid density 
surface tension coefficient 
streamfunction, dimensional and dimensionless 
vorticity, dimensional and dimensionless 
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Subscripts 

( 9  v partial differentiation 
i, j 

1. 

2. 
3. 

4. 

5. 
6. 

7. 

8. 

9. 
10. 

11. 
12. 
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